If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+8x-9=0
a = 7; b = 8; c = -9;
Δ = b2-4ac
Δ = 82-4·7·(-9)
Δ = 316
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{316}=\sqrt{4*79}=\sqrt{4}*\sqrt{79}=2\sqrt{79}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{79}}{2*7}=\frac{-8-2\sqrt{79}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{79}}{2*7}=\frac{-8+2\sqrt{79}}{14} $
| 2.6x=-19.5 | | s*3.6=33 | | 123/4+y=33 | | 2=5+2x+x | | -7=|5x|-27 | | -20*y=100 | | 8(x-1)=-88 | | 22-x÷3=-7 | | 10d+20=-80 | | 12=0.5x+6 | | x+.06x=116.60 | | 11x-28)+7x-8=180 | | 5x^{3}+2x=8 | | 6/7=n/5.9 | | f(30)=0.642(30)^1.557 | | s+7=6+4s | | 3(2a-1)=3/4a-17 | | 2x-(-2+)=-3 | | X+0.25x=508.75 | | X+0.08x=136.08 | | 902=0.5n(n-3) | | 2/x+6=1 | | 96.2x1.2x=98.5-0.8x | | 45x²+5x+12=0 | | 0=a^2-11a+14 | | 4x-2(x+2.5)=50 | | X-0.08x=136.08 | | y=8+2.3(10) | | y=8+2.3(10 | | 5+4(5+6x)=55 | | -6x^{2}+36x=−714 | | 456÷78+f=904 |